L'ETAT D'EQUILIBRE D'UN SYSTEME

I Le quotient de réaction

1) Définition

Le quotient de réaction (Qr) : pour la réaction aA+bB=cC+dD

(A, B, C, D : réactifs et produits ; a, b, c, d leurs coefficients)

est définit par : $Qr = \frac{[C]^c \times [D]^d}{[A]^a \times [B]^b}$; $[B]^b$:concentration de B à la puissance b.

- [A], [B], [C], [D] représentent la valeur des concentrations molaires.
- L'unité : Le Qr n'est pas dimensionné, sa valeur est exprimée sans unité
- Le Qr dépend du sens de la transformation dans le cas d'un équilibre.

2) Application aux systèmes homogènes

Le solvant utilisé dans une réaction n'intervient pas dans l'écriture du quotient de réaction même s'il figure dans l'équation bilan.

Exemples:

•
$$I_{2(aq)} + 2S_2O_3^{2-}(aq) = 2I_{(aq)}^- + S_4O_6^{2-}(aq)$$

$$Qr = \frac{[I^-]^2 \times [S_4O_6^{2-}]^{(1)}}{[I_2]^{(1)} \times [S_2O_3^{2-}]^2}$$

•
$$CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$$

$$Qr = \frac{[H_3O^{+}] \times [CH_3COO^{-}]}{[CH_3COOH]}$$

 $H_2{\cal O}_{(l)}$ étant le solvant : on ne le met pas dans l'équation.

•
$$H_2O_{2(aq)} + 2I^{-}_{(aq)} + 2H_3O^{+}_{(aq)} = I_{2(aq)} + 4H_2O_{(l)}$$

$$Qr = \frac{[I_2]}{[H_3O_2] \times [I^{-}]^2 \times [H_3O^{+}]^2}$$

3) Application aux systèmes hétérogènes

Par convention : les espèces solides non dissoutes n'interviennent pas dans l'écriture du Qr

Exemples:

•
$$Cu_{(s)} + 2Ag^{+}_{(aq)} = Cu^{2+}_{(aq)} + 2Ag_{(s)}$$

$$Qr = \frac{[Cu^{2+}]}{[Ag^{+}]^{2}}$$

•
$$Cu^{2+}_{(aq)} + 2HO^{-}_{(aq)} = Cu(HO)_{2(s)}$$

$$Qr = \frac{1}{[Cu^{2+}] \times [HO^{-}]^{2}}$$

•
$$CuSO_{4(s)} = Cu^{2+}{(aq)} + SO_4^{2-}{(aq)}$$

 $Qr = [Cu^{2+}] \times [SO_4^{2-}]$
4) Qr et avancement

Exemples : Réaction entre NH_4^+ et CH_3COO^- :

Equation: $NH_4^{+}(aq) + CH_3COO^{-}(aq) = NH_{3(aq)} + CH_3COOH_{(aq)}$

Avancement	$NH_4^+(aq) + CH_3COO^-(aq) = NH_{3(aq)} + CH_3COOH_{(aq)}$			
t = 0	n_1	n_2	0	0
t	$n_1 - x$	$n_2 - x$	X	х
$t_{\rm inf}$	$n_1 - x_f$	$n_2 - x_f$	x_f	x_f

La solution à un volume V

$$Qr = \frac{[NH_3] \times [CH_3COOH]}{[NH_4^+] \times [CH_3COO^-]}$$

$$[NH_3] = \frac{n}{V} = \frac{x_f}{V}$$
; $[CH_3COOH] = \frac{x_f}{V}$

$$[NH_4^+] = \frac{n_1 - x_f}{V}$$
; $[CH_3COO^-] = \frac{n_2 - x_f}{V}$

$$Qr = \frac{\frac{x_f^2}{V^2}}{\frac{(n_1 - x_f)(n_2 - x_f)}{V^2}}$$

 $Qr = \frac{\frac{x_f^2}{V^2}}{\frac{(n_1 - x_f)(n_2 - x_f)}{V^2}}$ Le Qr d'une transformation dépend des quantités initiales des réactifs (n_1 et n_2) et de l'avancement final (x_f).

$Qr = \frac{x_f^2}{(n-r_0)(n-r_0)}$

II Le quotient de réaction dans le cas d'un équilibre

1) Conductivité et concentration

- Conductance G: inverse de la résistance: $G = \frac{1}{R}$; avec R en Ω et G en S (siemens)
- Conductivité σ : La conductivité d'une solution dépend de la concentration des espèces chimiques et de leurs conductivité molaire ionique (λ)

$$\sigma = \sum \lambda . [X] \text{ unit\'e} : S.m^{-1} \text{ ; avec } \lambda \text{ en } S.m^2.mol^{-1} \text{ et} [X] \text{ en } \boxed{mol.m^{-3}}$$

Exemple : dans une solutions de Na^+Cl^- :

$$\begin{split} \sigma &= \lambda_{Na^{+}}.[Na^{+}] + \lambda_{Cl^{-}}.[Cl^{-}] \\ n_{Cl^{-}} &= n_{Na^{+}} \\ \text{donc} : [Cl^{-}] &= [Na^{+}] = \frac{n}{V} \\ \text{d'où} : \\ \sigma &= [Na^{+}](\lambda_{Na^{+}} + \lambda_{Cl^{-}}) \\ \text{soit} : [Na^{+}] &= [Cl^{-}] = \frac{\sigma}{\lambda_{Na^{+}} + \lambda_{Cl^{-}}} \end{split}$$

2) Détermination du quotient de réaction dans le cas d'un équilibre chimique

Voir TP

Conclusion : $Qr_1 = cste$

Le Qr prend la même valeur quelque soit les conditions initiales (solutions 1 à 8) pour une équilibre donné.

Acide salicylique : $Qr = 1,0.10^{-3}$

Acide méthanoïque : $Qr = 1.8.10^{-4}$

Acide éthanoïque : $Qr = 1.8.10^{-5}$ Acide benzoïque : $Qr = 6.3.10^{-5}$

3) La constante d'équilibre K

Définitions:

La constante d'équilibre K associée à l'équation d'une réaction est la valeur que prend le Qr quand l'état d'équilibre est atteint.

$$aA + bB = cC + dD$$

$$k = Qr_{(eq)} = \frac{[C]^{c}_{(eq)} \times [D]^{d}_{(eq)}}{[A]^{a}_{(eq)} \times [B]^{b}_{(eq)}}$$

- $[A]^a{}_{(eq)}, [B]^b{}_{(eq)}$ sont les concentrations molaires des espèces A et B à l'état d'équilibre.
- K est une valeur qui dépend de la nature de l'équilibre
- K ne dépend ni du mélange de départ, ni des conditions initiales du système
- K dépend de la température
- K n'a pas d'unité
- aA + bB = cC + dD

$$AH_{(aq)} + H_2O_{(l)} = A^{-}_{(aq)} + H_3O^{+}_{(aq)}$$

- K est indépendant du sens de la transformation
 - 4) Le taux d'avancement final
 - Influence de l'état initial

Le taux d'avancement final dépend des conditions initiales. Sa valeur augmente avec la dilution

Influence de la constante d'équilibre

Acide	K	$ au_{(sol1)}$	$ au_{(sol8)}$
Salicylique	$1,0.10^{-3}$	0.13	0.26
Méthanoïque	$1,8.10^{-4}$	0.08	0.16
Ethanoïque	1,8.10 ⁻⁵	0.05	0.08
Benzoïque	$6,3.10^{-5}$	0.28	0.48

La valeur du taux d'avancement augmente avec celle de la constante d'équilibre (K)

Cas d'une réaction totale :

Si $K \ge 1,0.10^4$ alors τ va tendre vers 0.99 On considère que la réaction est totale.