Géométrie affine

I Sous espace affines

1) Translation d'un ev

Définition :

Soit $a \in E$, l'application $t_a : E \to E$ est appelée translation de vecteur a

Propriété : $({}^{\alpha}(E), \circ)$ est un groupe commutatif

2) Sous espace affine

Définition : A une partie de E

A est un sous espace affine de E lorsque :

 $A = \emptyset$ ou $\exists a \in E$ et F sev de A, A = a + F

Propriété : $a \in E$, F sev de E $a + F = F \Leftrightarrow a \in F$

Propriété : Soit a + F un se affine de E et $b \in E$

 $b+F=a+F \Leftrightarrow b \in a+F$

Propriété : F et G deus sev de E

 $a \in E$ $a + F = a + G \Leftrightarrow F = G$

Définition : Soit $a \in E$, F sev de E

LE se affine a + F est LE se affine passant par a et de direction F

Définition : Une droite, un plan et hyperplan affines sont des sous espaces affines de directions respectives une droite (ev de dimension 1), un plan et un hyperplan.

Propriété: A et B se affines de E non vides de direction F et G. Si $A \cap B \neq \emptyset$ alors $A \cap B$ est un se affine de direction $F \cap G$

3) point d'un espace vectoriel

On appelle les éléments de E des points, on pose $\forall (x, y) \in E^2$, $\overrightarrow{xy} = y - x$

Lorsque les éléments de E sont considérés comme des points, on dit que E est muni de sa structure affine.

II Application affine

1) Application affine

Définition : $f : A \rightarrow A$ une application

On fixe $A \in \mathbb{A}$ et on définit $u = \overrightarrow{AM} \mapsto \overrightarrow{f(A)f(M)}$ (une application)

F est dite application affine de $\mathbb A$ lorsque $\vec f$ est une application linéaire

Propriétés :

- 1) Si G barycentre de (A,a) (B,b) alors f(G) barycentre de (f(A),a) (f(B),b)
- 2) F est injective $\Leftrightarrow \vec{f}$ injective (idem pour surjective et donc bijective)
- 3) L'ensemble des applications affines bijectives (noté $GA(\mathbb{A})$) est un groupe pour o on l'appelle le groupe affine.

1

2) Exemple d'applications affines

 (O,e_1,e_2) un repère de \mathcal{F} . f une application affine

$$f: \mathcal{T} \to \mathcal{T}$$

$$M \begin{pmatrix} x \\ y \end{pmatrix} \mapsto M \begin{pmatrix} x' \\ y' \end{pmatrix}$$
 On note O' = f(O)

$$\forall M \in P, \ \overrightarrow{O'M'} = \overrightarrow{f}(\overrightarrow{OM}) \ \text{donc} \ \overrightarrow{OM'} = \overrightarrow{OO'} + \overrightarrow{f}(\overrightarrow{OM})$$

Si
$$\max_{(e_1,e_2)} \vec{f} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 alors $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ où $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ sont les coordonnées de O
$$\begin{cases} x' = ax + cy + x_0 \\ y' = bx + dy + y_0 \end{cases}$$

III Isométrie

 $\textit{D\'efinition}: f: \mathbb{A} \to \mathbb{A} \;\; \text{est appel\'ee} \; \text{isom\'etrie de} \;\; \mathbb{A} \;\; \text{lorsque f est une application affine qui conserve la distance}$

1) isométries du plan

Propriété: Soit $f: \mathcal{P} \to \mathcal{P}$ une application affine

F une isométrie de $\mathcal{F} \Leftrightarrow \vec{f} \in O(E)$

 $\textit{Définition}: Soit f une isométrie de $\mathcal{T}$$

 \mathbf{x} Si $\det(\mathbf{f}) = 1$, \mathbf{f} est appelée un déplacement

lpha Si $\det(\vec{f}) = -1$, f est appelée un antidéplacement

 $\textit{D\'efinition}: A \in \mathcal{F}$, $\theta \in \mathbb{R}$

On appelle rotation de centre A et d'angle θ et on la note $r_{A,\theta}$, l'isométrie de $\mathcal F$ laissant invariant A et de partie linéaire $\vec f=r_{\theta}$

Théorème :

Les déplacements de ${\mathcal F}$ sont les translations et les rotations.

 ${\it D\'efinition}:$ Soit D une droite de ${\it F}:$ on appelle réflexion par rapport à D, et on note ${\it ref}_{\rm D},$ toute isométrie laissant fixe les points de D et de partie linéaire \vec{f} la symétrie orthogonale par rapport à \vec{D}

Propriété: Soit $A, B \in \mathcal{P} A \neq B$

Il existe une unique réflexion transformant A en B

2) Composée de 2 réflexions

$$\text{Si D // D'}: \text{Soit } \vec{u} \perp D \quad ref_{D'} \circ ref_D = t_{2\vec{u}} \quad \text{avec } t_{\vec{u}}(D) = D'$$

Si D et D' non parallèles : $\theta = (D,D') \big[\pi \big] \; ref_{D'} \circ ref_D = r_{A,2\theta}$

3) Isométries de l'espace affine

Définition : Soit D un axe de ℓ_3 , $\theta \in \mathbb{R}$

On appelle rotation d'axe D d'angle θ et on note $r_{D,\theta}$, l'isométrie affine laissant invariant un point de D et de partie linéaire $r_{\bar{D},\theta}$.

Théorème : Classification de déplacement de \mathcal{E}_3

Les déplacements de ℓ_3 sont les translations, les rotations, les vissages (composée de rotation et de translation)