Courbes paramétrées (2)

I Courbes en représentation cartésienne

 $\sigma:I o \mathbb{F}$ | Yarc paramétré par (I,arphi) I intervalle de \mathbb{R} | $t\mapsto ig(x(t),y(t)ig)$ | et σ C^{∞} sur I

1) Point stationnaire

 \times Si $(x'(t_0), y'(t_0)) \neq (0,0)$ alors le point M(t₀) est dit régulier et $\vec{U}(x'(t_0), y'(t_0))$ dirige la tangente

 \times Si $(x'(t_0), y'(t_0)) = (0,0)$ Alors le point $M(t_0)$ est dit stationnaire.

La tangente en M(t₀) est dirigée par $\varphi^{(p)}(t_0) = (x^{(p)}(t_0), y^{(p)}(t_0))$

ou p est le plus petit entier positif tel que $arphi^{(p)}(t_0) \neq (0,0)$

Soit q > p: le plus petit entier tel que $\left(\varphi^{(p)}(t_0), \varphi^{(q)}(t_0)\right)$ est une famille libre p et q sont appelés les entiers caractéristiques de point $M(t_0)$

p impair et q pair : Point ordinaire

p impair et q impaire : Point d'inflexion

p pair et q impair : Point de rebroussement de 1ère espèce

p pair et q pair : Point de rebroussement de 2^{nde} espèce

2) Plan d'étude

- a) Détermination des intervalles de définition
- b) Réduction du domaine d'étude (Périodicité, parité, invariance par des isométries simples)
- c) Variations : Calculer x'(t), y'(t) et rassembler les variations de x et de y dans un même tableau
- d) Etude des branches infinies
- e) Etude des points stationnaires (DL)
- f) Tracé
- q) Précision des points doubles

II Courbes en coordonnées polaires

Définition : La donnée d'une fonction $r:I \to \mathbb{R}$ et d'une fonction $\theta:I \to \mathbb{R}$

$$\begin{split} \text{d\'efinit l'axe param\'etr\'e} & \stackrel{\Gamma:I\to\mathcal{P}}{t\mapsto M(t)} \text{ tel que } \overrightarrow{OM}(t) = r(t)\cos\left(\theta(t)\right)\overrightarrow{i} + r(t)\sin\left(\theta(t)\right)\overrightarrow{j} \end{split}$$

Cas particulier fréquent : $\theta(t) = t$

L'axe paramétré à pour équation $r = r(\theta)$

Période et antipériode

Si r est 2π périodique alors $M(\theta+2\pi)=M(\theta)$ il suffit d'étudier Γ sur un intervalle de longueur 2π

Si $\forall \theta \in D, r(\theta + \pi) = -r(\theta)$ alors $\forall \theta \in D, M(\theta + \pi) = M(\theta)$ il suffit d'étudier Γ sur un intervalle de longueur π On dit que r est antipériodique.

Principe du secteur angulaire

Si pour $\alpha < \theta < \beta$ $r(\theta)$ de signe constant

Tangente en O

Si $r(\theta_0)=0$ alors $M(\theta_0)=0$ et la tangente est dirigée par $\vec{u}(\theta_0)$ en 0.

1

$$\frac{\textit{Tangente en } M \neq 0}{r(\theta_0) \neq 0 \quad \varphi'(\theta_0) = r'\vec{u} + r\vec{u}' \neq 0}$$

Branches infinies

Etude des branches infinies, comme dans le chapitre 4

Plan d'étude des courbes en polaire

- a) Détermination des intervalles de définition
- b) Détermination des intervalles d'étude (antipériode, rotation de centre O)
- c) Etude des branches infinies
- d) Tableau des signes de $r(\theta)$ et d'annulation de $r(\theta)$ (variations de r facultatif)
- e) Tracé : points particuliers, tangentes, principe du secteur angulaire
- f) Points double

III Etude métrique des courbes

- 1) arc orienté
- 2) abscisse curviligne
- 3) Longueur d'un arc C1
- 4) Vecteur tangent unitaire
- 5) Repère de Frenet
- 6) Courbure